If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-56x+98=0
a = 3; b = -56; c = +98;
Δ = b2-4ac
Δ = -562-4·3·98
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{196*10}=\sqrt{196}*\sqrt{10}=14\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-14\sqrt{10}}{2*3}=\frac{56-14\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+14\sqrt{10}}{2*3}=\frac{56+14\sqrt{10}}{6} $
| 8x+2(5-x)=3(2x+3)+1 | | 54+c-19+c-3=180 | | x^2*(8+3)-12=0 | | 3(-3r+8)=34-7r | | -96=10x+4 | | -1/2x-7/4=3/8 | | 3/6n=10 | | 9x+1=1/27 | | 4.9t^2-7t+100=0 | | 1+3/2p=11/5 | | -2x-3=-5x+9 | | 1.25c=6.5 | | 86+93+x/3=90 | | 86+93+x=90 | | .3333333333333333333333333333333333333333333n=10 | | 0=4.9t^2-7t+100 | | 4/5x-1/3=7/17 | | 63)h=160 | | 1.8g=5.5 | | 19p+1.50=15p+2.75 | | 54+c-19=180 | | 100x=0,001 | | 1.5x-2.25=8 | | m^2+24m-11=0 | | 4/5x-1/2=7/2 | | 5x-(2x+1)=-3(x+5)+4 | | 6x+124−12=2(3x−9)5 | | .75a=6 | | 36.4+k=64.1;k=28.7 | | 2(-6x+11)+3x=-9x+22 | | 6-x+6=7 | | -118-11x=-x+32 |